Selective Hydrogenations of Dienes and Olefins by [W2(OCH2But)6(py)2] ## Jane T. Barry and Malcolm H. Chisholm* Department of Chemistry, Indiana University, Bloomington, IN 47405, USA Hydrocarbon solutions of $[W_2(OCH_2Bu^t)_e(py)_2]$ in the presence of H_2 (3 atm, 23 °C) hydrogenate linear 1,3-dienes to 3-enes, 1,3- and 1,5-cyclooctadiene to cyclooctene, 1,3-cyclohexadiene to cyclohexene, cyclopentene to cyclopentane, and norbornene to norbornane, but do not hydrogenate α - and internal olefins to alkanes, or internal conjugated or unconjugated dienes. Homogeneous hydrogenation catalysts typically involve metal hydride ligands, e.g. as in Wilkinson's catalyst [RhCl(PPh₃)₃] + $H_2 \rightleftharpoons$ [RhCl(H)₂(PPh₃)_n], where n=2 or 3, and these hydride ligands are often labile to reversible insertion reactions prior to reductive elimination of the hydrocarbon.¹ Consequently, selective hydrogenation of specific carbon–carbon double bonds is of particular interest. A group of catalysts that effect the specific hydrogenation of conjugated dienes to olefins include $[\text{Co}(\text{CN})_5]^{3-}$ and $[\text{Cr}(\text{CO})_3(\eta^6\text{-methylbenzoate})]^{2,3}$ The latter compound yields 1,4-addition of H_2 to the diene while the former yields a mixture of (*cis* and *trans*) but-1-ene and -2-ene in reactions with 1,3-butadiene. We describe here the hydrogenation behaviour of $[W_2(\text{OCH}_2\text{Bu}^t)_6(\text{py})_2]$ towards various dienes and olefins. In hydrocarbon solvents $[W_2(OCH_2Bu^t)_6(py)_2]$ reversibly dissociates pyridine, allowing the reversible uptake of both ethene and 1,3-butadiene.^{4,5} Steric factors are evidently important in controlling adduct formation since no reactions are observed with $\alpha\text{-olefins}$ or internal olefins. Similarly, while 1,3-butadiene and isoprene, CH2=CMeCH=CH2, show evidence of coordination in solution (blue–black colour and complex multiplets in the OCH2But region of the 1H NMR spectra) other conjugated and nonconjugated dienes do not. Given that the solid-state structure of $[W_2(OCH_2Bu^t)_6(\mu,\eta^1,\eta^4\text{-}C_4H_6)(py)]$ contains a labile pyridine ligand the potential for uptake of a small molecule such as H_2 appeared plausible, even though $[W_2(OCH_2Bu^t)_6(py)_2]$ and H_2 do not form detectable hydrido or dihydrogen species. Consistent with this reasoning we find that [W₂(OCH₂-But)6(py)2] serves as a hydrogenation catalyst for conjugated 1,3-dienes giving the internal 3-monoene. The reactions were typically carried out at ambient temperatures, 23 °C, and 3 atm. H₂ pressure in a J. Young tube and monitored by NMR spectroscopy. Reactions with D₂ reveal that the addition is strictly 1,2 as in the formation of CH₂DCHDCH=CH₂ from 1,3-butadiene. With isoprene it is the sterically unencumbered double bond that is hydrogenated vielding CH₂=CMeCH₂CH₃. Ethene, α-olefins and linear internal olefins and dienes are not hydrogenated. However, strained olefins as in cyclopentene and norbornene are hydrogenated. The exceptions to the rule that only 1,3-conjugated dienes are hydrogenated are seen in the conversion of 1,5-cyclooctadiene to cyclooctene and in the polymerization of norbornadiene.6 Neither furan, nor thiophene are hydrogenated, presumably because their conjugated double bonds are contained within a pseudo-aromatic ring. However, styrene and allyl ether are. The results of the hydrogenations are summarized in Table 1. Collectively these serve as a starting point for the development of selective hydrogenation catalysts involving (W=W)⁶⁺ centres supported by alkoxide ligands. It seems likely that the specificity for hydrogenation of 1,3-dienes is related to the novel coordination modes of the dienes to the dimetal centre (see 1), wherein one C=C unit is more reduced than the other. Similarly for styrene, diallylether 1,4-cyclohexadiene, and 1,5-cyclooctadiene a chelate effect may operate to facilitate the activation of the C=C double bond as indeed an olefin in a strained ring is activated toward coordination to the dinuclear centre. **Table 1** Selective hydrogenation of polyenes catalysed by [W₂(OCH₂-Bu¹)₆(py)₂]. The turnover numbers are in the order of 2 mol substrate/mol of catalyst per hour | Substrate | Hydrogenation Products | | |--|---|--| | R
I | R | | | R = H or Me | | | | | ^_ | | | | | | | | | | | n = 1, 2, 3, 4 | | | | // = 1, 2, 3, 4 | ^ | | | | | | | | | | | | A | | | | $\langle \cdot \rangle_n$ | | | n = 1, 2, 3, 4 | | | | CH ₂ =CH-O-CH=CH ₂ | CH ₂ =CH-O-CH ₂ -Me | | Hydrogenation was not observed for the following: $$R = Me$$, $C \equiv CH$ $E = O \text{ or } S$ R = H, Me, Et, $CH_2CH=CH_2$, C(O)H, C(O)Me We thank the Department of Energy, Office of Basic Sciences, Chemistry Division for support of this work. Received, 10th May 1995; Com. 5/02946E ## References 1 F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn., Wiley, New York, 1988, ch. 28. - 2 J. Kwiatek, I. L. Mador and J. K. Seyler, in Advances in Chemistry 70, ACS, Washington, D.C., 1963, ch. 15. 3 L. W. Gosser, *US Pat.* 3 673 270, 1972. - 4 R. H. Cayton, S. T. Chacon, M. H. Chisholm and J. C. Huffman, Angew. Chem., Int. Ed. Engl., 1987, 26, 903. - 5 M. H. Chisholm. J. C. Huffman, E. A. Lucas and E. B. Lubkovsky, Organometallics,, 1991, 10, 3424. - 6 The NMR spectra for the polymer formed was consistent with the NMR spectra for poly(norbornadiene) prepared independently by ClAlEt₂, a known cationic initiator. W. R. Sorenson and T. W. Campbell, *Preparative Methods of Polymer Chemistry*, Interscience, New York, 1961, ch. 4.